Triethylgallium Mediated Lactamization of α,ω-Amino Carboxylic Acids

Yoshinori YAMAMOTO* and Toshiaki FURUTA

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980

The 5-, 6-, 7-, and 8-membered lactams are obtained from the corresponding α, ω -amino carboxylic acids in good to high yields by treatment with triethylgallium in toluene or benzene.

Lactam macrocycles are an important and frequently encountered structure in biologically active natural products. Lactamization of simple α, ω -amino carboxylic acids has been accomplished by using catecholborane, $^{(1)}$ dibutyltin oxide, $^{(2)}$ titanium tetraisopropoxide, $^{(3)}$ and Al₂O₃ (or SiO₂). $^{(4)}$ The α, ω -amino acid derivatives activated as the thioesters have undergone lactamization with SnCl₂. $^{(5)}$ Formation of macrocyclic lactams from α, ω -amino acid derivatives containing chelating polar groups has been accomplished with catecholborane and aminoborane. High dilution method has been frequently used for macrolactamization of a number of activated α, ω -amino acid derivatives. We report that Et₃Ga mediated lactamization of simple α, ω -amino acids proceeds without using high dilution method in higher yields than the previously reported metal mediated procedures (Eq. 1); the cyclization via R₃Al also proceeds well but better results are obtained with Et₃Ga.

 $R_3M = Et_3Ga, R_3A1$

Table 1. Et₃Ga and R₂Al Mediated Lactamization

Entry	1 n	R ₃ M (equiv.)	Time/h	Condn. ^{a)}	Product yield / % b)	
					2	3
1	3	Et ₃ Al (2)	5	A	82 (5) ^{c)}	-
2	3	Et ₃ Ga (1.5)	5	Α	88 (5) ^{c)}	-
3	4	Me ₃ Al (2)	2	В	98 (6) ^{c)}	-
4	4	Et ₃ Ga (2)	3	В	86 (6) ^{c)}	-
5	5	Et ₃ Al (2)	5	Α	69 (7) ^{c)}	-
6	5	Et ₃ Ga (1.5)	5	Α	81 (7) ^{c)}	-
7	6	Et ₃ Al (2)	5	Α	7 (8) ^{c)}	2 (16) ^{c)}
8	6	Et ₃ Ga (1.5)	5	Α	18 (8) ^{c)}	4 (16) ^{c)}
9	6	Et ₃ Ga (1.5)	5	С	43 (8) ^{c)}	12 (16) ^{c)}
10	7	Me ₃ A1 (2)	2	В	-	18 (18) ^{c)}
1 1	7	Et ₃ Ga (1.5)	5	Α	-	6 (18) ^{c)}
1 2	7	Et ₃ Ga (1.5)	5	С	7 (9) ^{c)}	8 (18) ^{c)}
13	10	Et ₃ Al (2)	5	Α	-	4 (24) ^{c)}
1 4	10	Et ₃ Ga (1.5)	5	Α	-	10 (24) ^{c)}
1 5	1 1	Me ₃ A1 (2)	2	В	-	9 (26) c)

a) A: substrate (1 mmol)/toluene (10 ml)/reflux. B: substrate (1 mmol)/benzene (10 ml)/reflux. C: substrate (1 mmol)/toluene (100 ml)/reflux.

The results are summarized in Table 1. Formation of 5- and 6-membered lactams proceeded with very high yields regardless of the aluminum and gallium reagents (entries 1-4). Other procedures $^{1)-4}$ also produce these ring size lactams with high yields. The 7-membered lactam was obtained in higher yield with $\rm Et_3Ga$ than with $\rm Et_3Al$ (entries 5 and 6). The reaction progress in the condensation with $\rm Et_3Al$ (entry 5) was followed by time, and it was revealed that the reaction essentially completed after 1 hr and the starting material was recovered at this stage; 2 (69%) and 1 (30%)(n = 5). This observation suggested that $\rm Et_3Al$ would be decomposed gradually under toluene reflux. Therefore, it was anticipated that thermally more stable $\rm Et_3Ga$ may produce higher yield.

b) Isolated yield through silica gel chromatography. c) Ring size.

Actually, this proved to be the case (entry 6). Normally, it is difficult to make 8-12 membered rings via the cyclization methods; 9) especially formation of 8- and 9-membered rings is extremely hard to achieve. As expected, the 8-membered ring was obtained by using $\rm Et_3Al$ in only 7% along with 2% of 3 (16-membered ring)(entry 7). The yield was improved with $\rm Et_3Ga$ under the same reaction condition (A) (entry 8), and finally under the condition (C) $\rm Et_3Ga$ gave 43% yield of the 8-membered lactam (entry 9). To the best of our knowledge, such an efficient synthesis of 2 (n = 6) from 1 has not been accomplished. Even by using this procedure, the 9-membered ring was obtained only in 7% yield (entry 12, cf. entries 10 and 11). Attempts to obtain 12- and 13-membered rings were unsuccessful (entries 13 - 15), and instead the dimers were obtained along with polymers.

Formation of ϵ -caprolactam (2, n = 5) is representative. A hexane solution of $\mathrm{Et}_3\mathrm{Ga}$ (0.73 M, 2.1 ml) was added to a suspension of 6-aminocaproic acid (135.4 mg, 1.032 mmol) in toluene (10 ml) under nitrogen atmosphere. The mixture was refluxed for 5 hr with stirring, and then cooled to room temperature. Water (0.1 ml) was added and the mixture was stirred for 1 hr. The resulting white precipitate was filtered and the mother liquor was concentrated. Purification through silica gel (5 g) column chromatography with chloroform-methanol (50 : 1) gave ϵ -caprolactam (95.0 mg, 81.3% yield).

The intermolecular amide bond formation between carboxylic acids (or esters) and amines is accomplished with dimethylaluminum amides 10) or with boron reagents. 11) The intramolecular β -lactam formation from β -aminoacid ester is achieved by using i-Bu $_3$ Al. 12) The present results clearly demonstrate that R_3 Al mediated method can be applied to the lactam formation of the 5-8 membered rings from α,ω -amino acids, and more importantly that Et_3 Ga is a useful reagent, more efficient than R_3 Al, for macrolactamization to the 7-9 rings. Comparison between the Al and Ga procedures is made in Fig. 1. Macrolactamization with Et_3 In was also attempted. Unfortunately, this reagent was less effective than Et_3 Al and Et_3 Ga. The thermal stability of these three reagents is in an order of Et_3 In > Et_3 Ga > Et_3 Al. Presumably, Et_3 In is too stable to cause the cyclization. We thank Sumitomo Chemical Co. Ltd. for giving us Et_3 Ga-hexane and Et_3 In-hexane solution. We are now pursuing research of organic synthesis via Ga-N bond.

800 Chemistry Letters, 1989

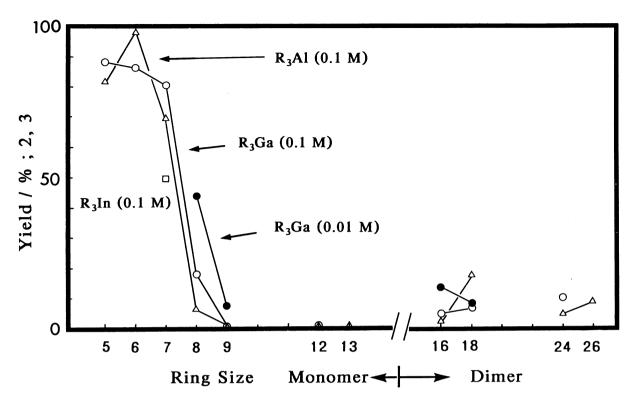


Fig. 1. Comparison between the Al and Ga Methods.

 \triangle ; Et₃Al or Me₃Al, \bigcirc ; Et₃Ga, \square ; Et₃In

References

- 1) D. B. Collum, S. C. Chen, and B. Ganem, J. Org. Chem., 43, 4393 (1978).
- K.Steliou, A. S.-Nowosielska, A. Favre, M. A. Poupart, and S. Hanessian, J. Am. Chem. Soc., <u>102</u>, 7578 (1980); K. Steliou and M. A. Poupart, ibid., <u>105</u>, 7130 (1983).
- 3) M. Mader and P. Helquist, Tetrahedron Lett., 29, 3049 (1988).
- 4) A. Blade-Font, Tetrahedron Lett., 21, 2443 (1980).
- 5) M. Bartra, V. Bou, J. Garcia, F. Urpi, and J. Vilarrasa, J. Chem. Soc., Chem. Commun., 1988, 270.
- 6) J. S. McManis and B. Ganem, J. Org. Chem., 45, 2041 (1980).
- 7) H. Yamamoto and K. Maruoka, J. Am. Chem. Soc., 103, 6133 (1981).
- 8) For example, E. J. Corey, L. O. Weigel, A. R. Chamberlin, H. Cho, and D. H. Hua, J. Am. Chem. Soc., <u>102</u>, 6613 (1980); U. Schmidt, A. Lieberknecht, H. Bokens, and H. Griesser, J. Org. Chem., <u>48</u>, 2680 (1983); M. Natsume and M. Ogawa, Chem. Pharm. Bull., <u>32</u>, 3789 (1984).
- 9) G. Illuminati and L. Mandolini, Acc. Chem. Res., 14, 95 (1981).
- J. L. Wood, N. A. Khatri, and S. M. Weinreb, Tetrahedron Lett., <u>1979</u>, 4907;
 A. Basha, M. Lipton, and S. M. Weinreb, ibid., <u>1977</u>, 4171.
- 11) A. Pelter, T. E. Levitt, and P. Nelson, Tetrahedron, <u>26</u>, 1539 (1970);
 A. Pelter and T. E. Levitt, ibid., <u>26</u>, 1545, 1899 (1970).
- 12) R. B. Woodward, Science, <u>153</u>, 487 (1966).

(Received February 27, 1989)